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Abstract. We present a new method to detect and remove ringing ar-
tifacts produced by the deconvolution process in image deblurring tech-
niques. The method takes into account non-invertible frequ ency com-
ponents of the blur kernel used in the deconvolution. E�cien t Gabor
wavelets are produced for each non-invertible frequency and applied on
the deblurred image to generate a set of �lter responses that reveal ex-
isting ringing artifacts. The set of Gabor �lters is then emp loyed in a
regularization scheme to remove the corresponding artifacts from the
deblurred image. The regularization scheme minimizes the responses of
the reconstructed image to these Gabor �lters through an alt ernating
algorithm in order to suppress the artifacts. As a result of t hese steps
we are able to signi�cantly enhance the quality of the deblur red images
produced by deconvolution algorithms. Our numerical evalu ations us-
ing a ringing artifact metric indicate the e�ectiveness of t he proposed
deringing method.

Keywords: deconvolution, image deblurring, point spread function, r ing-
ing artifacts, zero-magnitude frequency

1 Introduction

Despite considerable advancements in camera lens stabilizers and shake reduc-
tion hardware, blurry images are still often generated due to the camera motion
during the exposure time. Hence, e�ective restoration is requiredto deblur cap-
tured images. Assuming that the imaging system is shift invariant, it can be
modeled as

b = l � k + !; (1)

where b 2 RMN is the blurred captured image, l 2 RMN is the latent sharp
image, k 2 RMN � MN is the point spread function (PSF) that describes the
degree of blurring of the point object captured by the camera,! 2 RMN is the
additive noise, and� denotes the 2D convolution operator. Hence, the objective
of the deblurring process is to recoverl from b. Image deconvolution is often
used for that purpose. One may neglect the noise and consider a naive solution
for this inverse problem as

l = F �
�

F (b)
F (k)

�
; (2)
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Fig. 1. Deblurred images with ringing artifacts. (a) Ground-truth image. (b) Degraded
image. (c) Blur kernel (PSF). (d)-(g) Deblurring results us ing RL, [6], [12], and [21].
The images are rescaled for a better illustration. (The �gur es in this paper are best
viewed on screen, rather than in print)

where F (:) denotes the 2D Fourier transform operator. Even if the PSF k is
known precisely, this approach results in ampli�ed singularities in the presence
of a very small amount of noise. This occurs due to the characteristics of blur
kernels and the unknown Fourier transform of the random noise function [1].
Hence, numerous deconvolution algorithms have been developed toestimate the
latent sharp image. They include Wiener [2] and Richardson-Lucy (RL) [3, 4]
techniques, least squares minimization [5], Bayesian inference [6{8], advanced
variational based [9{13], and stochastic framework [14] methods.

A challenging problem in latent image restoration is the presence of wave-
like artifacts called ringing that appear near strong edges. Ringing examples are
illustrated in Fig. 1. These light and dark ripples are mainly due to the Gibbs
phenomenon [15] as the Fourier sums overshoot at discontinuities (i.e., image
edges), and this overshoot does not die out while the frequency increases. This
phenomenon can be ampli�ed if the noise! is not modeled accurately and if the
PSF k is noisy or inaccurately estimated [6]. The latter case is even more serious
in blind deconvolution approaches [16{19] that involve PSF estimationfrom the
blurred image.

Several researchers have considered the ringing issue and tried to reduce the
artifacts in deconvolution schemes. Yuan et al. [20] addressed ringing artifacts
by adapting edge-preserving bilateral �lters to the conventional RL algorithm
in a residual multiscale deconvolution approach. Shan et al. [6] proposed a spa-
tially random noise model to separate errors in noise and PSF estimation. They
also proposed to impose a smoothness constraint on the latent image to sup-
press ringing artifacts in the deconvolution process. Cho et al. [21]recognized
saturated pixels, pixels degraded by non-Gaussian noise, and a non-linear cam-
era response function violate the linear blur model of Eq. (1) and cause severe
ringing artifacts. The camera temporal shutter modulation proposed by Raskar
et al. [22] generates a very 
at frequency spectrum. This eliminates zeros from
the PSF to overcome the occurrence of zeros in the denominator inthe decon-
volution process and consequently to reduce artifacts. The idea of taking into
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account the zero frequencies of the PSF was also employed in the design of the
coded aperture of Levin et al. [23] in removal of the out of focus blur. Increasing
the weight of the regularizer term in the variational-based deconvolution tech-
niques can also suppress the ringing artifacts. However, this over-smooths the
recovered image and removes its edges [10{12]. Employing appropriate priors in
such regularization schemes may reduce the potential artifacts as done partially
by using cross-channel priors introduced by Heide et al. [24]. A means of ringing
artifact detection can be quite e�ective to add ringing a priori know ledge to the
deconvolution algorithm.

Ringing artifact detection algorithms were initially developed to evaluate
the quality of compressed images impaired by ringing artifacts [25, 26]. These
algorithms are not practical in detection of ringing artifacts produced in the
deconvolution process, since the nature of ringing artifacts is di�erent in image
compression and image deconvolution. This yields a need for deconvolution-
speci�c algorithms to detect ringing artifacts. The deblurred image is passed
through a bank of Gabor-like wavelets by Zuo et al. [27], then the vertical and
horizontal oscillation peaks are counted in the image �lter responses as a metric
for ringing artifacts. Since the employed �lters are neither adapted to the con-
tent of the image nor to the PSF, high frequency patterns and textures in the
image are falsely classi�ed as artifacts in the �lter response. A ringing detection
procedure was proposed by Liu et al. [28]. It consists of generatinga pyramid
of di�erent scales of the recovered image and �nding the gradient di�erence be-
tween each level of the pyramid. Such ringing artifact detectors are appropriate
only for quality assessment of the deblurred image and are not directly involved
in an approach to produce artifact-free deblurred images.

In this paper, we �rst propose a deconvolution ringing artifact detection
scheme based on the inspection of the saddle points and identifying the zeros in
the PSF frequency response. Speci�c 2D Gabor wavelets with appropriate direc-
tionality and wavelength properties are then generated for the PSF components
responsible for ringing artifacts. The produced 2D wavelets are used to localize
the artifacts in the deblurred image. Next, the ringing artifacts are removed from
the image by employing the produced wavelets in a variational-like regularization
algorithm. We in fact suppress the artifacts by minimizing the image response
to the generated Gabor �lters. We introduce a priori knowledge of the ringing
artifact locations in the restored image, by taking into account frequency details
of the PSF and employing Gabor �lters. The deblurring process independence
of the proposed method is so that it can be applied on the result of any decon-
volution approach. We show that besides its simplicity, this scheme signi�cantly
enhances the deconvolution results in terms of ringing artifact reduction which
is still a challenge in image restoration.

The rest of the paper is organized as follows. In Section 2, the PSF frequency
analysis and ringing artifact detection scheme is presented. In Section 3, a reg-
ularization algorithm is introduced to remove the artifacts by employing the
artifact detection �lters in a variational-based minimization. We then present
experimental results in Section 4, followed by our conclusions in Section 5.
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Fig. 2. 1D signal restoration using Eq. (2). (a-c) Blurred signal, P SF, and deblurred
signal in the time domain. (d-f) Blurred signal, PSF, and deb lurred signal in the fre-
quency domain

2 Ringing Artifact Detection

The principle of deblurring consists of decoupling the blur function from the
observed image as in Eq. (2). However, mainly since the noise is neglected,
this model generates severe artifacts. Although this model has been modi�ed
to include reasonable noise models in the modern deconvolution techniques, the
inevitable presence of zero values in the denominator of Eq. (2) is a problem-
atic source of ringing artifacts. This issue is shown in Fig. 2 for a 1D signal
restoration. A 1D signal is convolved with the PSF shown in Fig. 2(b) to gen-
erate the blurred signal Fig. 2(a). This signal is then deblurred using Eq. (2)
and the result is shown in Fig. 2(c). By inspecting the Fourier transform of the
PSF (Fig. 2(e)) we �nd that at the frequency of 0 :25 Hz the PSF has zero mag-
nitude. In other words, PSF components that belong to the 0:25 Hz band have
very low power. These components generate large amplitude oscillations at the
same frequency in the deblurred signal (Fig. 2(f)). Therefore, inthe time do-
main of the deblurred signal, components that belong to the 0:25 Hz frequency
band dominate the signal. This e�ect appears as a sinusoidal pattern with a
high amplitude in the deblurred signal and is considered a ringing artifact. From
the large amplitude of the reconstructed signal Fig. 2(c) (� 20 to 20) compared
to that of the blurred signal Fig. 2(a) (0 to 5) we can infer how corrupted the
deblurring result is. Such zero power frequency components in a 2DPSF can
be largely responsible for disturbing ringing artifacts in 2D signals i.e., images.
The fact that ringing artifacts follow a sinusoidal pattern inspired t he deconvo-
lution artifact detection techniques of Zuo et. al [27] and Liu et al. [28]. This is
even more promising that from our PSF frequency analysis we can predict the
frequency of this sinusoidal wave. This is shown for the 1D case in Fig. 2(c) by
a superimposed sinusoidal signal indicated by a red diagram whose frequency of
0:25 Hz is chosen by inspection of the PSF frequency spectrum Fig. 2(e).

2.1 Using Gabor Filters

The Gabor �lter is a traditional choice for obtaining localized frequency infor-
mation. A 2D Gabor �lter o�ers an e�cient localization of spatial and f requency



Title Suppressed Due to Excessive Length 5

information. Frequency and orientation representations of 2D Gabor �lters have
been shown to be appropriate for texture discrimination [29]. Since the impulse
response of a Gabor �lter is a sinusoidal wave plane, it can be an e�ective tool to
detect the image ringing artifacts that follow sinusoidal patterns. The 2D Gabor
�lter is de�ned as

g(x; y) =
1

2�� x � y
e

� 1
2 ( x 2

� 2
x

+ y 2

� 2
y

)
e� j 2� (( u0 x + v0 y)+ � ) : (3)

The Gabor function can be viewed as a sinusoidal plane of particular frequency
and orientation, modulated by a Gaussian envelope. In Eq. (3) (x; y) denotes the
spatial location, � x and � y are respectively the horizontal and vertical standard
deviations of the Gaussian envelope,u0 and v0 are respectively the x-axis and
y-axis frequencies of the sinusoidal plane, and� is the phase o�set.

The spatial frequency of the ringing artifacts in a deblurred image can be
determined by inspecting the Fourier transform of the PSF. The coordinate of a
zero value in the Fourier transform of the PSF represents the spatial frequency of
the ringing components in the deblurred image. Substitutingu0 and v0 in Eq. (3)
by the spatial frequency of a zero magnitude frequency component of the PSF
results in an appropriate �lter to localize the image artifacts produced by that
frequency component. The parameters� x and � y of the Gaussian kernel in the
�lter can be selected based on the deblurred image contents. Theyshould not be
either too high to taper the image edges and misclassify them as ringing artifacts,
or too low to miss the low intensity ringing artifacts. We need to ensure that
the image ringing pattern with a delay or an advance (di�erent phase o�sets)
will be detected by the �lter. Hence, �rst one �lter is produced with � = 0 and
another one is generated with� = �= 2, then the generated �lters with di�erent
phase o�sets are superimposed to make a single �lter.

As an example of the process consider Fig. 3, where a blurred synthetic image
and its PSF are shown in Fig. 3(b). This image is deblurred using the RL method
as illustrated in Fig. 3(c). As seen in this �gure, compared with the ground-truth
image Fig. 3(a), the deblurring result contains ringing artifacts especially in the
brighter region of the image. In order to have a better insight, thediagram of the
�rst 140 pixel intensities at row 200 of the deblurred image is shown by the blue
plot in Fig. 3(g). From the frequency spectrum of the PSF Fig. 3(e), the low-
magnitude component with spatial frequenciesu0 = � 0:045 and v0 = 0 :001 is
picked as the source of ringing artifacts. (The procedure to select such frequencies
is discussed in Section 2.2.) The Gabor �lter exhibited in Fig. 3(d) is generated
using Eq. (3) by utilizing these horizontal and vertical frequencies. The �lter is
then convolved with the deblurred image to localize the sinusoidal artifacts. The
thresholded �lter response of the deblurred image Fig. 3(h) reveals the regions
that contain artifacts in the deblurred image. The Gabor �lter resp onse at row
200 of the image is illustrated in Fig. 3(g) (red dashed plot), along with the
deblurred pixel intensities (blue plot). In this case, the Gabor �lter generated
with the frequencies obtained from the PSF, e�ectively �ts and localizes the
wave-like artifacts produced in the deconvolution process.
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Fig. 3. Ringing detection by employing Gabor �lter and the PSF frequ ency details.
(a) Ground-truth image (originally 256 � 256). (b) Synthetically blurred image and
its PSF. (c) Deblurred image that contains ringing artifact s. (d) Generated Gabor
�lter for artifact detection (enlarged for a better illustr ation). (e) The blur PSF in
Frequency domain. (f) Saddle points and zero points in the fr equency spectrum of the
PSF. (g) Pixel intensity values and Gabor �lter response val ues on row 200 of the
image. (h) Thresholded image Gabor �lter response to locate the ringing regions

2.2 Artifact Detection Algorithm

The ringing artifact detection algorithm �rst analyses the PSF to loc ate the
zero-magnitude components in the Fourier domain. Then, for eachcomponent
a Gabor �lter is generated. There may exist many zero-magnitude frequency
components in the PSF but not all of them are useful in the artifact detection
process. The zero values located far from the center of the frequency spectrum
may cause ringing but the frequency of their produced ringing is toohigh to
be perceivable. Therefore, we avoid them in the process to reducethe number
of Gabor �lters employed in the scheme. Such kind of frequency components
are marked with the white dots in the Fourier transform of the PSF shown in
Fig. 3(f). Also, a sharp transient in the frequency domain of the PSF denotes an
apparent oscillatory decay in the PSF which is the cause of the dominant ringing
in the restored image. Hence, we reduce the number of required Gabor �lters to
the number of zero-magnitude frequency components of the PSFthat lie on the
saddle points of the PSF Fourier transform. This is done by creatinga map of
local minimum points in the Fourier domain using a morphological operator:

m(�p; �q) =

8
>><

>>:

1 if
�

K̂ (�p; �q) < K̂ (p; q); 8p 2 [p � `; p + `] ^ 8 q 2 [q � `; q + `]
�

^
�

(p; q) 6= (�p; �q) ^ K̂ (�p; �q) < �
�

0 otherwise;
(4)

whereK̂ = jF (k)j denotes the magnitude matrix of the Fourier transform of the
PSF indexed byq and p, and ` determines the number of neighbouring values in
K̂ . � is a small value near zero used as a threshold to determine the low values,



Title Suppressed Due to Excessive Length 7

Algorithm 1 Ringing articfact detection.
Require: Deblurred image l, deconvolution PSF k, Gabor �lter parameters � x and � y

1: Generate r an M � N matrix of zeros
2: Generate m using Eq. (4)
3: j = 0
4: for (p; q) = (1 ; 1) to ( p; q) = ( M; N ) do
5: if m(p; q) = 1 then
6: j = j + 1
7: u0  map p to frequency
8: v0  map q to frequency
9: Generate gj using Eq. (3)

10: Find �lter response y j = l � gj

11: �y j  Binerize y j

12: r = r _ �y j

13: end if
14: N f req = j
15: end for
16: return r , f g1 ; g2 ; :::; gN f req g

and m is the map of local minima of K̂ . The white crosses in Fig. 3(f) are the
appropriate points found by Eq. (4) in the PSF frequency spectrum.

In the next step, a set of Gabor �lters is generated using the spatial fre-
quencies determined bym. Each �lter is then applied on the deblurred image
l to produce di�erent responses that represent ringing patternswith di�erent
frequencies and orientations. The �ltering results are then binarized and super-
imposed to make a mask of all regions that contain ringing in the image.Algo-
rithm 1 outlines all the steps of the ringing artifact detection method, where _
denotes the element-wise binary or operator to superimpose results. The princi-
pal objective of this algorithm is localizing the artifact regions. However, as will
be discussed in the next section, in order to remove the artifacts we need the
set of Gabor �lters generated by Algorithm 1. Hence, in addition to the map of
ringing regionsr , the set of Gabor �lters is returned by this algorithm for a later
artifact removal procedure.

The ringing detection algorithm may falsely classify the image edges aspart
of the ringing pattern especially if the ringing occurs near strong edges. To avoid
this issue, the process should be performed only on the smooth regions and not
the edges. This cannot be done by simply running an edge detector to preserve
the edges before the artifact detection step since the ringing artifacts would
be detected by the edge detection schemes. Instead, we propose to analyse the
local contrast of the image and run the algorithm on low contrast regions where
there is no edge pixel. Typically, contrast is estimated by Weber's formula: Cl =
(lo � lb)=lb where lo and lb are the luminance of the object and its surrounding
background, respectively. More complex contrast analysis can beperformed by
employing discrete cosine transform and wavelets [30, 31]. We use the local mean
mean(l ) and standard deviation std(l ) of the image intensity to estimate the
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contrast of a region with its background [32]Cl = std(l )=mean(l ). This value is
computed for all existing blocks (e.g., 4� 4 pixels) in the input image, then the
regions with large Cl are removed from the binary mask generated at line 11 in
Algorithm 1. Hence, edges are not detected as part of the ringing artifacts.

3 Ringing Artifact Removal

Let gj be a Gabor �lter generated from the j th zero-magnitude frequency com-
ponent of the PSF. Hence, for a PSF employed in the deblurring process with
N f req zero-magnitude frequency components, we generate a set of Gabor �lters
g1; g2; :::; gN f req to detect the ringing artifacts in the deblurred image l . The ring-
ing artifacts detected by analysing the PSF frequency components and Gabor
�lters can be suppressed through a regularization scheme. Our artifact suppres-
sion technique, similar to the total variation [9] and Tikhonov regular ization [33]
methods widely used in inverse imaging problems, consists of a likelihoodterm
and a regularizer as follows:

minimize
f

�
2

jj f � l jj2 +
N f reqX

j =1

jjgj f jj1; (5)

where the left term is the likelihood function weighted by the regularization
parameter � and the right term is the regularizer. In (5), l is the observed (already
deblurred with ringing artifacts) image and f is the reconstructed image. In fact,
some a priori knowledge about the unknown image (i.e., ringing artifacts and
their locations) is added to the likelihood function by employing the regularizer.
Note that jj :jj1 is the L 1 norm, jj :jj is the L 2 norm and jj :jj2 is its square, and
for brevity gj f � f � gj where � denotes the 2D convolution operator.

Despite its simple formulation, problem (5) is computationally challenging
to solve. This is mainly due to the non-di�erentiability and non-linearity of the
regularizer [34]. According to [35] and [36], such regularization problems can
be addressed using the half-quadratic penalty method. Therefore, we follow the
variable splitting scheme employed in [10{12,37] to solve (5). We introduce aux-
iliary variables u = f u1; :::; uN f req g to transfer gj f out of the non-di�erentiable
term jj :jj1 in (5) to model the optimization as

minimize
f;u

�
2

jj f � l jj2 +
�
2

N f reqX

j =1

jjgj f � uj jj2 +
N f reqX

j =1

jjuj jj1; (6)

with a penalty parameter � . The value of this penalty parameter has an impor-
tant role in convergence of (6) [10]. When� ! 1 , the solution of the approxi-
mation problem (6) converges to that of (5). Using the information r obtained
about the locations of the ringing regions,� is adapted so that the regulirizer
term has the least e�ect on the pixels that do not belong to the ringing regions.
Consider � as anN � M matrix whose elements indexed by (x; y) de�ned as

� (x; y) =

(
� 0 if r (x; y) = 0
~� otherwise ;

(7)
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where ~� ! 1 and � 0 is a small constant in the deringing process. Hence, the
weight of artifact-free pixels remains small in (6) and the ringing minimization
is carried out only on the pixels identi�ed by r in Algorithm 1. Note that in (6)
the multiplication is performed element-wise on� .

The optimization problem (6) can be performed by alternating between two
steps in an iterative scheme. In one step we solve forf , given values ofu:

minimize
f

�
2

jj f � l jj2 +
�
2

N f reqX

j =1

jjgj f � uj jj2; (8)

and in another step we solve foru, given values off :

minimize
u

�
2

N f reqX

j =1

jjgj f � uj jj2 +
N f reqX

j =1

jjuj jj1: (9)

which is in fact solving N f req sub-problems of:

minimize
u j

�
2

jjgj f � uj jj2 + jjuj jj1 (10)

3.1 f Sub-problem

Given u which is obtained from the previous iteration, we need to solve (8) to
approximate a newf . A �xed value for u yields a quadratic form for (8). Hence,
the solution for this problem can be the solution for the normal equation as

0

@
N f reqX

j =1

gj T

gj +
�
�

h

1

A f =

0

@
N f reqX

j =1

gj T

uj

1

A +
�
�

l; (11)

where h is an N � M matrix of ones. Using the Fourier transform, (11) can be
rewritten as

f = F � 1

 P N f req

j =1 F (gj )� F (uj ) + �
� F (l )

P N f req
j =1 F (gj )� F (gj ) + �

� F (h)

!

; (12)

where the multiplications are element-wise and� denotes the complex conjugate.

3.2 u Sub-problem

Finding an optimal u is subject to minimizing (10) independently for each Ga-
bor �lter, in total N f req times. This minimization can be done using the con-
ventional approaches such as Newton-Raphson. It was shown in [10, 37] that
such type of problems can be reduced to a shrinkage scheme so we can avoid
the computational challenges of the conventional optimization methods. Hence,
each component ofuj indexed by i can be approximated as follows:

uj
i = max

�
j(gj f ) i j �

1
� i

; 0
�

sgn(gj f ) i ; (13)

where max(:) returns the maximum and sgn(:) is the sign function.
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Algorithm 2 Ringing artifact suppression.
Require: Deblurred image l, Gabor �lters g1 ; :::; gN f req , r , � 0 , � max , �
1: f = l , ~� = � 0

2: while ~� < � max do
3: Find � using Eq. (7)
4: for j = 1 to N f req do
5: Given f , �nd uj using Eq. (13)
6: end for
7: Given u, �nd f using Eq. (12)
8: ~� = ~� � 2
9: end while

10: return f

(a) (b) (c)
(d)

(e)

(f)

Fig. 4. Sample blurry images and their blur kernels used in our tests and the Gabor
�lters generated for artifact removal. (a) Image 1: The orig inal image is synthetically
blurred using the motion blur PSF available in [28]. (b) Imag e 2: The blurry image
and its estimated PSF are provided by Shan et al. [6]. (c) Imag e 3: The blurry image
and the PSF are captured using a dual-camera set-up. The kernels in (a), (b) and (c)
are 4 times larger than the original sizes, for a better view. (d-f) Gabor �lters used in
artifact detection and removal for the image shown in (a), (b ), and (c) respectively

3.3 Summary of the Artifact Removal Algorithm

The optimization process is outlined in Algorithm 2. We minimize (6) by alter-
nating between the f and u sub-problems. As mentioned before, for the opti-
mization problem to converge we need to satisfy� ! 1 for the corresponding
ringing pixels. Therefore, we initiate ~� with � 0 and increment it during the it-
erations. The iterations stop once ~� = � max . It is worth noting that the �xed
parameters in Eq. (8), such asF (g1); F (g2); :::; F (gN f req ) and their conjugates,
F (l ), and F (h) can be precomputed to save some computational time.

4 Experimental Results

We evaluated the performance of the proposed artifact detection and removal
scheme on images. To this end, a set of blurry images were used. Three di�erent
types of blurry image and PSF pairs belong to this set. The �rst type of blurry
images were created synthetically with known PSFs, as presented in[28]. An
example of such images and PSFs is shown in Fig. 4(a). Another type of images
were captured by camera that contain motion (handshake) blur. Using a blind
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RL Chan et al. [12] Shan et al. [6] Cho et al. [21]

(a)

(b)

(c)

(a)

Fig. 5. Deblurring Image 1 synthetically blurred using a known PSF. (a) Deblurring
results using di�erent algorithms. (b) Detected ringing re gions. (c) Deringing results

deconvolution approach, a PSF was estimated for each image. An example of
such images and their PSFs is shown in Fig. 4(b) provided by Shan et al.[6].
Finally, we built a dual-camera framework similar to that of Ben-Ezra and Nayar
[38] to estimate the PSF from the camera motion in the exposure time. Fig. 4(c)
shows an image and its corresponding PSF captured using this framework. The
blurry images were deblurred by employing di�erent algorithms: (i) RL [3, 4],
(ii) Chan et al.'s method [12] that uses total variation norm prior and L 2 variant
prior, (iii) the algorithm of Shan et al. [6] using a smoothness prior, and (iv) that
of Cho et al. [21] by handling ringing prone pixels. The deblurring results are
demonstrated in Fig. 5(a), Fig. 6(a) and Fig. 7(a). The input parameters for the
deblurring algorithms [6, 12, 21] such as regularization weights and smoothness
factors are chosen so that they do not generate over-smoothened and cartoon-
like results. As seen in these �gures, all of the employed deconvolution schemes
generate ringing artifacts, except Cho et al.'s algorithm for Image 1. This image
is synthetically blurred and its PSF is precise. Hence, it is deblurred well using
Cho et al.'s method where ringing prone outliers are well-handled. Algorithm 1
was performed on the deblurred images to locate the artifacts generated in the
deconvolution stage. Then, the �lters produced by Algorithm 1 were used in
Algorithm 2 to suppress the ringing artifacts.

In the ringing detection step, the Gaussian parameters were set as � x = 8
and � y = 8 in Algorithm 1. Also, � = 0 :0001 and` = 5 so that 11 � 11 points
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RL Chan et al. [12] Shan et al. [6] Cho et al. [21]

(a)

(b)

(c)

(a)

Fig. 6. Deblurring Image 2 using a PSF estimated through blind decon volution. (The
horizontal pattern in the background is part of the original scene and should not be
mistaken by ringing patterns.)(a) Deblurring results usin g di�erent algorithms. (b)
Detected ringing regions. (c) Deringing results

are considered in Eq. (4). Due to the symmetry of the Fourier transform of
the PSF, half of the detected minima points can be discarded. This reduces
the number of Gabor �lters required in the detection process. Ringing artifact
detection results are presented in Fig. 5(b), Fig. 6(b), Fig. 7(b).The generated
sets of Gabor �lters obtained for these examples are shown in Fig. 4(d)-(f). The
detected ringing mask for each example is superimposed on the deblurred image
with a yellow color. Almost all ringing regions in the deblurred images were
detected by the algorithm. The deblurring process is more challenging for the
blurry images in Fig. 6 and 7 than for the image presented in Fig. 5. ThePSF
used in the deblurring process of the image in Fig. 6 was estimated through
blind deconvolution. Hence, it may not accurately represent the blur function
of the imaging system and can be a di�erent source of ringing artifacts. The
same issue may arise from the PSF of Fig. 7 produced using the hybrid-imaging
framework. Such PSFs contain sharp discontinuities due to the quantization and
interpolation mechanisms employed in the PSF estimation procedure.Moreover,
they likely do not represent all of the points of the image [39]. Thus, these PSFs
violate the spatial invariance assumption of Eq. (1). Among our test images, the
PSF of Image 3 is the extreme case of producing ringing artifacts. Despite such
challenges, the ringing artifact detection algorithm detected almost all of the
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RL Chan et al. [12] Shan et al. [6] Cho et al. [21]

(a)

(b)

(c)

(a)

Fig. 7. Deblurring Image 3 using a camera motion-based PSF captured with a hybrid
imaging system. (a) Deblurring results using di�erent algo rithms. (b) Detected ringing
regions. (c) Deringing results

Table 1. Ringing artifact measurement for di�erent algorithms and d eringing results.

Deblurring Algorithms: RL Chan et al. [12] Shan et al. [6] Cho et al. [21]

Image 1
Deblurring 0.00037 0.00210 0.00089 0.00010
Deblurring and Deringing 0.00016 0.00022 0.00031 0.00010

Image 2
Deblurring 0.02440 0.00470 0.00112 0.00406
Deblurring and Deringing 0.00290 0.00282 0.00091 0.00270

Image 3
Deblurring 0.00580 0.00481 0.00673 0.00510
Deblurring and Deringing 0.00201 0.00163 0.00210 0.00170

ringing regions in the deblurring results of these examples. This is largely due to
the fact that artifacts caused by zero-magnitude frequency components of a PSF
dominate the ringing patterns present in a deblurred image. Algorithm 2 employs
the detected ringing regions and the generated Gabor �lters by Algorithm 1 in
order to provide a priori knowledge to the regularization scheme toenhance the
deblurred images. Algorithm 2 was performed on the deblurring results of the
deconvolution schemes. In our simulations,� 0 = 1 and � max = 64. Hence, the
algorithm runs for 6 iterations. Another important parameter is th e weight � of
the likelihood term in the deringing problem (5). A typical value for � is 1000,
so that the process does not remove or over-smooth the essential details of the
image. Fig. 5(c), Fig. 6(c) and Fig. 7(c) illustrate the apparent enhancement
carried out by the deringing process.
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A quality metric that takes into account the deblurred image ringing artifacts
through a non-reference scheme was recently introduced by Luiet al. [28]. In or-
der to provide an objective evaluation, this non-reference qualityassessment was
used in our experiments. Table 1 summarizes the obtained quality measurements
for the deblurred images using di�erent approaches and their post-deconvolution
deringing results. A high value obtained for a deblurred image indicates that
more perceivable ringing artifacts exist in the image. The values in thetable
indicate a high performance for the proposed ringing artifact removal algorithm
and also the artifact detection algorithm that provides accurate Gabor �lters.

Limitations The method is adapted to the artifacts caused by zeros in the
frequency spectrum of the PSF. Hence, it may not detect the ringing patterns
generated due to other facts such as non-linearity of a camera response func-
tion, non-Gaussian noise, and violating the spatially invariant assumption of the
imaging system. Also, the algorithm is customized by considering the local con-
trast factor to detect the most perceivable ringing artifacts. Therefore, it may
miss the ringings that appear in high contrast regions such as the one produced
by Chan et al.'s method near the right hand of the statue in Fig 6(b).

5 Conclusions

We proposed a new approach to suppress the ringing artifacts produced by image
deblurring methods. The artifact removal algorithm is a variational- like regular-
ization scheme that bene�ts from a novel a priori knowledge in reconstructing
an artifact-free image from the deblurred image. The prior is the locations and
intensities of the ringing artifacts determined e�ciently by a set of G abor �lters.
We proposed to generate Gabor �lters for each deblurred image with regards to
its PSF frequency components. Hence, each produced Gabor �lter has speci�c
orientation and frequency details obtained by inspecting the zero-magnitude fre-
quency components of the PSF. Each �lter is able to localize a ringing pattern in
the deblurred image. We used such �lters in the ringing removal process and in-
troduced an independent algorithm to detect ringing artifacts for other purposes
such as quality assessment. Our experimental results indicate highperformance
for both the artifact detection and artifact removal methods.

Although the proposed ringing artifact removal scheme was designed as a
post-processing tool to enhance the results of any type of the image deblurring
algorithms, the linearity property of Gabor �lters makes the introd uced prior
fairly straight forward to be employed directly in variational-based deconvolution
algorithms. The proposed a priori knowledge can be employed along with the
total variation norm prior [10], Hyper-Laplacian prior [11], and/or th e cross-
channel prior [24] in a deconvolution algorithm in order to produce ringing-free
deblurred images.
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