Depth of Subchondral Perforation Influences the Outcome of Bone Marrow Stimulation Cartilage Repair

Hongmei Chen,1 Caroline D. Hoemann,1 Jun Sun,2 Anik Chevrier,1 Marc D. McKee,3 Matthew S. Shive,2 Mark Hurtig,4 Michael D. Buschmann1

1Department of Chemical Engineering and Institute of Biomedical Engineering, Ecole Polytechnique of Montreal, PO 6079 Station Centre-ville, Montreal, Quebec, Canada H3C 3A7, 2Piramal Healthcare (Canada), Montreal, Quebec, Canada, 3Faculty of Dentistry, McGill University, Montreal, Quebec, Canada, 4Department of Clinical Studies, University of Guelph, Guelph, Canada

Received 15 October 2010; accepted 24 January 2011
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/jor.21386

ABSTRACT: Subchondral drilling and microfracture are bone marrow stimulation techniques commonly used for the treatment of cartilage defects. Few studies to date have examined the technical variants which may influence the success of the cartilage repair procedures. This study compared the effect of hole depth (6 mm vs. 2 mm) and hole type (drill vs. microfracture) on chondral defect repair using a mature rabbit model. Results from quantitative histomorphometry and histological scoring showed that deeper versus shallower drilling elicited a greater fill of the cartilage defect with a more hyaline character in the repair matrix indicated by significant improvement (p = 0.021) in the aggregate measure of increased cartilage defect fill, increased glycosaminoglycan and type II collagen content and reduced type I collagen content of total soft repair tissue. Compared to microfracture at the same 2 mm depth, drilling to 2 mm produced a similar quantity and quality of cartilage repair (p = 0.120) according to the aggregate indicator described above. We conclude that the depth of bone marrow stimulation can exert important influences on cartilage repair outcomes. © 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:1–7, XXXX

Keywords: bone marrow stimulation; microfracture; Pridie drilling; articular cartilage repair; subchondral bone

Correspondence to: Michael D. Buschmann (T: 514-340-4711 ext. 4931; F: 514-340-2980. E-mail: michael.buschmann@polymtl.ca) © 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

MATERIALS AND METHODS
Experimental Design and Surgical Procedure
The research protocol was reviewed and approved by an institutional ethics committee for animal research. Sixteen skeletally mature (9–10 months old) female New Zealand White rabbits were randomly assigned to two groups, each (N = 8) comparing two marrow stimulation techniques bilaterally. As depicted in Figure 1A, Group I received deep drilling (6 mm) on the left knees and shallow drilling (2 mm) on
Cartilage is known to block repair. Effort was made to chondral bone with visible punctuate bleeding since calcified complete debridement of the calcified cartilage to expose sub-Vancouver, Canada) in the central trochlear groove with using a flat surgical blade (Fine Science Tools, Inc., North knees and MFX holes on the right knee, both at the same depth of 2 mm (referred to as DRL2/GrpII and MFX2/GrpII, respectively with RLS to remove loose bone and cartilage debris. The patella was then repositioned and the knee closed in sutured layers. The knees were allowed unrestricted motion after the animals recovered from anesthesia. All animals received a fentanyl transdermal patch (Duragesic 25, Janssen-Ortho, Inc., Toronto, Canada) for extended analgesia, received a fentanyl transdermal patch (Duragesic 25, Janssen-Ortho, Inc., Toronto, Canada) for extended analgesia, and were sacrificed 3 months postoperatively.

Figure 1. (A) Study design and pattern of marrow stimulation holes (circles) on cartilage defects (square). Group I compares deep drill holes (DRL6/GrpI, 6 mm) to shallow drill holes (DRL2/GrpI, 2 mm), and Group II compares MFX2/GrpII to DRL2/GrpII holes both at 2 mm deep. (B) Schematics of tissue repair regions used in histomorphometry where the orange polygon refers to total soft tissue volume and the red outline defines the original articular defect projected from adjacent cartilage. Group I: DRL6 versus DRL2 (n=8) Group II: DRL2 versus MFX2 (n=8)

Histoprocessing, Histostaining, and Immunohistochemistry

Collected femur ends were fixed in 4% paraformaldehyde/1% glutaraldehyde/0.1 M sodium cacodylate (pH 7.3), decalcified in HCl and OCT-embedded. Transverse sections were collected systematically from three levels at the locations of the original distal and proximal holes, and midway between the holes in all defects. Safranin-O (Saf-O)/Fast Green staining and immunostaining for collagen type I (Col1) and collagen type II (Col2) were performed as previously described.16

Histological Scoring and Quantitative Histomorphometry

All analyses were carried out on three sections per defect collected from the aforementioned three levels. O’Driscoll histological scoring17 was performed by two independent blinded observers on Saf-O-stained sections. Quantitative histomorphometry on Saf-O-stained sections was performed using Northern Eclipse software (V8.0, Empix Imaging, Inc., Mississauga, ON, Canada). The total region of soft tissue repair was defined and measured as total soft tissue volume (orange polygon in Fig. 1B). Percent Saf-O+ repair tissue in total soft tissue volume was obtained by Northern Eclipse threshold analysis. The projected cartilage defect (red lines Fig. 1B) was established from the flanking articular cartilage, taking into account the curvature of the trochlear groove and thickness of the adjacent cartilage. %Fill was defined as percent tissue repair volume within the projected defect based on 2D cross-sectional areas of the projected defect area in histology sections from three distinct sites in each defect. Basal attachment of soft repair tissue was quantified with Northern Eclipse as percent attached over the total length of the interface between soft repair tissue and subchondral bone. Percent tissue volume positive for collagen type I and for collagen type II in the total soft tissue volume was quantified using Bioquant Osteo II software (V8.0, Bioquant Image Analysis Corp., Nashville, TN).

Statistical Analysis

Statistical analyses were performed with repeated measures in the Generalized Linear Model, Statistica (version 9.0, Statsoft, Inc., Tulsa, OK). Differences in histomorphometric parameters were compared between surgical treatments (DRL6 vs. DRL2 and DRL2 vs. MFX2) with treatment and animal taken as predictors, thus benefiting from the bilateral design where two treatments are compared in the same animal, thus reducing the effect of inter-animal variability. %Fill, %Saf-O, %Col2, and %Col1 were also analyzed together as an aggregate indicator of overall quantity and quality of repair cartilage by specifying two repeated-measure variables—the histomorphometric parameter and the section number (1–3). O’Driscoll scores were similarly analyzed with each of the three sections scored by two blinded observers constituting six repeated measures. Spearman rank order correlations between histomorphometric parameters were computed. p < 0.05 was considered statistically significant.

RESULTS

General Observations

After 3 months of repair, Saf-O staining of proteoglycan-rich repair tissue was detected mostly in the deep-mid region of repair tissue (Figs. 2A–C and 3A,C,D). Immuno-reactive Col2 was more widespread in the repair matrix, covering a larger area than Saf-O stain.
in all treatment groups (compare E–H to A–D in Figs. 2 and 3). The superficial repair tissue in most specimens (81%) contained Col1 and had diminished intensity or depleted Saf-O stain indicating a component of fibrocartilaginous repair although three specimens were uniformly stained with Col2 with no Col1 and possessed quite hyaline matrix characteristics (example in Fig. 2G,K). The tidemark and zonal organization of articular cartilage were not yet re-established at the 3-month time point. Repair tissues frequently failed to bond with adjacent cartilage (Figs. 2A–D and 3A–D), as reflected by low O'Driscoll bonding scores (<1) for all treatment groups. Percent basal attachment of the repair tissue to the underlying bone was ~80% with no significant differences among treatments.

![Image of Safranin-O/Fast Green staining and Collagen Type II and I immunostaining](image)

Figure 2. Safranin-O/Fast Green staining (A–D), collagen type II (E–H), and collagen type I (I–L) immunostaining in Group I comparing deep 6 mm (DRL6) to shallow 2 mm (DRL2) drilling, after 3 months of repair. The images shown in the top (A–B, E–F, and I–J) panel were taken from representative sections from bilateral defects in the same animal, whereas those in the middle panel (C–D, G–H, and K–L) were from another animal in the same group. M: histomorphometric analyses of soft tissue repair. Significant effect \(p = 0.015, N = 8 \) for DRL6 versus DRL2. Improvement in tissue repair due to deep compared to shallow drilling was significant \(p = 0.021 \) when the four parameters (%Fill, %Saf O, %Col2, and %Col1) were analyzed together as repeated-measure variables for an aggregate indicator of overall repair quantity and quality.
Deeper Drilling Produced Statistically Superior Cartilage Repair than Shallower Drilling

Quantitative histomorphometry revealed that compared to shallow DRL2, deep DRL6 produced 85.6% versus 65.3% of %Fill \((p = 0.015)\), 41.1% versus 29.9% of %Saf O \((p = 0.125)\), 80.0% versus 65.6% of %Col2 \((p = 0.094)\), and 12.3% versus 20.7% of %Col1 \((p = 0.251; \text{Fig. 2M})\), with only %Fill being statistically significant at this small sample size \((N = 8)\). The trending of increased Saf-O stain for DRL6 versus DRL2 was corroborated by O’Driscoll matrix stain scoring \((p = 0.106)\). Improvement in tissue repair due to drilling compared to microfracture was not statistically significant \((p = 0.120)\) when the four parameters (%Fill, %Saf O, %Col2, and %Col1) were analyzed together as repeated-measure variables for an aggregate indicator of overall repair quantity and quality.

Figure 3. Safranin-O/Fast Green staining (A–D), collagen type II (E–H), and collagen type I (I–L) immunostaining in Group II comparing drilling (DRL2) to microfracture (MFX2), both perforated at 2 mm depth, after 3 months of repair. The images shown in the top (A–B, E–F, and I–J) panel were taken from representative sections from bilateral defects in the same animal, whereas those in the middle panel (C–D, G–H, and K–L) were from another animal in the same group. M: histomorphometric analyses of soft tissue repair. Improvement in tissue repair due to drilling compared to microfracture was not statistically significant \((p = 0.120)\) when the four parameters (%Fill, %Saf O, %Col2, and %Col1) were analyzed together as repeated-measure variables for an aggregate indicator of overall repair quantity and quality.
Due to deep versus shallow drilling was significant ($p = 0.021$) when four parameters ($\%$Fill, $\%$Saf-O, $\%$Col2, and $\%$Col1) were analyzed together as repeated-measure variables as an aggregate indicator of overall repair quantity and quality. Additionally, $\%$Fill was positively correlated with $\%$Saf-O and $\%$Col2, and negatively correlated with $\%$Col1. These weak ($r^2 = 0.2–0.3$) but statistically significant ($p < 0.05$) correlations suggested that these correlated hyaline matrix characteristics are linked and can be improved together by specific surgical techniques.

Drilling Did Not Statistically Improve Cartilage Repair Compared to Microfracture

Our data showed that compared to MFX2, DRL2 elicited 56% more total soft repair tissue ($p = 0.176$, orange polygon in Fig. 1B, data not shown); within this soft repair tissue matrix DRL2 elicited a 55% increase in $\%$Saf-O ($p = 0.223$), a higher $\%$Col2 ($p = 0.109$), and similar $\%$Col1 ($\sim 10\%$) (Fig. 3M) compared to MFX2. These differences were not statistically significant. $\%$Fill within the projected cartilage defect (red lines, Fig. 1B) was similar in both DRL2 and MFX2 repair. Improvement in tissue repair due to DRL compared to MFX was also not statistically significant ($p = 0.120$) when these four parameters were analyzed together as repeated-measure variables for an aggregate indicator of overall repair quantity and quality, consistent with O’Driscoll scoring results. Correlation analysis revealed that $\%$Saf-O in MFX2 repair was positively correlated with total soft tissue volume and negatively correlated with $\%$Col1; the latter correlation was also seen in DRL2 repair. These correlations were statistically significant but weak ($p < 0.05$, $r^2 = 0.2–0.5$). Additionally, $\%$Fill and $\%$Col2 appeared to be higher for DRL2 repair in Group II than in Group I (compare Figs. 2M to 3M). However, these differences are difficult to interpret due to high inter-animal variability and the fact that a bilateral comparison is not possible when comparing knees in different animals.

DISCUSSION

Surgical technique is expected to be an important factor in determining the success of bone marrow stimulation procedures. It is now well established that the calcified cartilage layer should be removed to provide access to bone marrow which is the principle source of repair cells. To our knowledge, the present study is the first to investigate the effect of subchondral perforation depth on cartilage repair outcomes, and to directly compare drilling and microfracture techniques. The results confirmed our hypotheses that drilling deeper increases cartilage repair quantity and quality in a statistically significant manner; however, we did not observe significant improvement in tissue repair comparing drilling to microfracture at the same 2 mm penetration depth.

Bone marrow stimulation-based cartilage repair relies on recruitment of marrow-derived mesenchymal progenitor cells to heal the defects. Providing access channels to marrow stroma is thus a prerequisite for these procedures. The improved repair observed here in deeper drilling may result from increased access to marrow compartments where the 6 mm holes have three times the surface area in contact with marrow compared to the 2 mm deep holes. In addition, the epiphysial scar of the rabbit trochlea is ~3 mm deep such that the deep holes penetrated through it while the shallow holes did not. It has been previously suggested that successful wound healing and cartilage repair relied on increased recruitment of bone marrow-derived mesenchymal cells, and that different cell types may reside in specific regions of the marrow. In this study, deep DRL created more access channels to the marrow and may potentially recruit a greater number of cells and a variety of cell types from the deep marrow stroma, resulting in improved cartilage repair (Fig. 2). We believe that the statistically significant one-third increase in $\%$Fill detected in the deeper DRL6 versus the shallower DRL2 defects is functionally important in terms of the ability of the repair tissue to bear load, since many clinical marrow stimulation studies only show partial fill of the cartilage lesion that is most likely not effectively load-bearing. The higher $\%$Col2 and $\%$GAG and lower $\%$Col1 observed in the DRL6 defects relative to DRL2 defects (Fig. 2) may also render the repair tissue more durable and able to bear load.

There is abundant research addressing the concern of thermal damage of bone due to drilling. Often described is the use of Kirschner-wires, which have a smooth surface without flutes and may then compress bone debris without removal, leading to increased bone density and increased heat due to friction. Of note, while a variety of clinically available drill designs with finely tuned parameters have been developed to reduce heat generation, the older drilling technique using Kirschner-wires is still practiced clinically. In our study, we used burr-shaped drills which removed bone debris effectively, along with continuous cool irrigation to minimize heating. These aspects help limit necrosis and preserve the vitality of surrounding bone according to our previous study, creating a favorable local environment, without apparent thermal necrosis, to attract reparative marrow cells for enhanced cartilage repair.

Although our collective data did not show significant improvement in defect repair comparing DRL to MFX at the same 2 mm depth, with a sample size of 8 and $p = 0.120$ for overall repair quantity and quality, repair matrix with hyaline-like or mixed hyaline/fibrocartilage characteristics was observed in many drilled defects (Figs. 2 and 3). Shapiro et al. also reported hyaline-like repair following drilling with good lateral integration and complete restoration of...
the subchondral tidemark and bone plate, but in young rabbits at 24 weeks postoperatively. Some of their findings were in contrast to our observations of relatively poor basal and lateral integration regardless of hole type and hole depth, possibly due to the ability of the younger skeletally immature animals used previously to repair robustly. Poor cartilage repair outcomes after DRL observed previously in clinical studies may have been due to incomplete debridement of the calcified layer or excessive removal of subchondral bone. Some of the first clinical drilling procedures with poor outcome also involved large arthrotomies, concomitant synovectomies, meniscectomies, osteophyte, and cartilage shaving, along with loss of a large volume of subchondral bone, pointing out the importance of designing specific and well controlled clinical studies of cartilage repair. Poor repair reported from some animal studies may have also been due to aggressive subchondral invasion or ablation of the subchondral bone plate (2 mm deep debridement), leading to bone resorption, cyst formation and even collapse. These findings highlight the importance of preserving the integrity of a healthy subchondral bone plate and underlying trabecular structure in marrow stimulation procedures.

Concerning animal models for cartilage repair studies, the use of skeletally immature rabbits is not recommended since they display a very high propensity for spontaneous repair unlike that seen in adult human cartilage repair. Our skeletally mature rabbit model was carefully chosen and the study design was based on simulating clinical microfracture in a geometrically proportional manner to human. For example, our surgical tool design, defect and hole pattern as well as their placement resulted in 17% of the defect surface area being perforated over the entire defect area, which is within the hole perforation density range performed clinically (13–49%, estimated from literature). We were also aware through our unpublished findings of some potentially important species differences which provide some justification for the use of a mature rabbit model in cartilage repair. In bone marrow stimulation-based repair, the state of the subchondral bone, being the primary source of repair, may be more important than the properties of remaining cartilage. We compared subchondral bone structure in human condyles to adult rabbit trochlea, and found a surprising similarity in subchondral porosity, pore surface area density and thickness of the bone plate between two species. On the other hand, the subchondral bone in human chronic cartilage lesions and in OA can become denser and more sclerotic and contain stem cell pools with less chondrogenic potential, which are different from our fresh defect model. To better relate animal models to human repair, alternative injury-induced chronic cartilage defects could be used in future studies.

Our study revealed that the specific surgical technique used can influence cartilage repair outcomes in an important manner. Drilling deeper to 6 mm versus 2 mm improved repair tissue quantity and quality in a statistically significant fashion, while drilling compared to microfracture at the same 2 mm depth produced similar repair outcomes. Our results support the notion that marrow stimulation procedures could be further optimized in a clinical setting to improve cartilage repair outcomes.

ACKNOWLEDGMENTS

This work was supported by Canadian Institutes of Health Research (CIHR), Canada Foundation of Innovation, Fonds de la Recherche en Santé du Québec (FRSQ, Groupe de Recherche en Sciences et Technologies, and Bourse Chercheur Senior to CDH), and BioSyntech Canada, Inc. Chen acknowledges postdoctoral fellowships from FRSQ, CIHR, and Natural Sciences and Engineering Research Council of Canada. We thank W. Ouyang, V. Laseau-Coman, L. Drago, M. Tran-Khanh, and D. Grenier-Lévesque for their assistance in this study.

REFERENCES

AQ1: Author: References 9 and 26 are same, hence the second occurrence have been deleted and renumbered accordingly. Please check.
ELECTRONIC PROOF CHECKLIST, JOURNAL OF Orthopaedic Research

IMMEDIATE RESPONSE REQUIRED
Please follow these instructions to avoid delay of publication.

☐ READ PROOFS CAREFULLY
 • This will be your only chance to review these proofs.
 • Please note that the volume and page numbers shown on the proofs are for position only.

☐ ANSWER ALL QUERIES ON PROOFS (Queries for you to answer are attached as the last page of your proof.)
 • Mark all corrections directly on the proofs. Note that excessive author alterations may ultimately result in delay of publication and extra costs may be charged to you.

☐ CHECK FIGURES AND TABLES CAREFULLY (Color figures will be sent under separate cover.)
 • Check size, numbering, and orientation of figures.
 • All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article.
 • Review figure legends to ensure that they are complete.
 • Check all tables. Review layout, title, and footnotes.

☐ COMPLETE REPRINT ORDER FORM
 • Fill out the attached reprint order form. It is important to return the form even if you are not ordering reprints. You may, if you wish, pay for the reprints with a credit card. Reprints will be mailed only after your article appears in print. This is the most opportune time to order reprints. If you wait until after your article comes off press, the reprints will be considerably more expensive.

RETURN ☐ PROOFS WITH CORRECTIONS MARKED DIRECTLY ON THEM
☐ REPRINT ORDER FORM
☐ CTA (If you have not already signed one)

RETURN WITHIN 48 HOURS OF RECEIPT VIA FAX TO Lillian Solondz at 201-748-6052

QUESTIONS?
Lillian Solondz, Senior Production Editor
Phone: 201-748-6183
E-mail: lsolondz@wiley.com
Refer to journal acronym and article production number (i.e., JOR B04-070)
Color Reproduction in Your Article

Color figures were included with the final manuscript files that we received for your article. Because of the high cost of color printing, we can only print figures in color if authors cover the expense.

Please indicate if you would like your figures to be printed in color or black and white. Color images will be reproduced online in Wiley InterScience at no charge, whether or not you opt for color printing.

You will be invoiced for color charges once the article has been published in print.

Failure to return this form with your article proofs will delay the publication of your article.

JOURNAL OF ORTHOPAEDIC RESEARCH

JOURNAL ____________________________

MS. NO. ____________________________

NO. OF COLOR PAGES ______________

TITLE OF MANUSCRIPT ____________________________

AUTHOR(S) ____________________________

<table>
<thead>
<tr>
<th>No. Color Pages</th>
<th>Color Charges</th>
<th>No. Color Pages</th>
<th>Color Charges</th>
<th>No. Color Pages</th>
<th>Color Charges</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400</td>
<td>5</td>
<td>2000</td>
<td>9</td>
<td>3600</td>
</tr>
<tr>
<td>2</td>
<td>800</td>
<td>6</td>
<td>2400</td>
<td>10</td>
<td>4000</td>
</tr>
<tr>
<td>3</td>
<td>1200</td>
<td>7</td>
<td>2800</td>
<td>11</td>
<td>4400</td>
</tr>
<tr>
<td>4</td>
<td>1600</td>
<td>8</td>
<td>3200</td>
<td>12</td>
<td>4800</td>
</tr>
</tbody>
</table>

Please contact the Production Editor for a quote if you have more than 12 pages of color

☐ Please print my figures in black and white

☐ Please print my figures in color

☐ Please print the following figures in color:

BILLING ADDRESS:

__

__

__
COPYRIGHT TRANSFER AGREEMENT

Date: ____________________________
To: ________________________________

Re: Manuscript entitled ______________________________ (the "Contribution") for publication in JOURNAL OF ORTHOPAEDIC RESEARCH ____________________________ (the "Journal") published by Wiley Periodicals, Inc. ("Wiley") for the Orthopaedic Research Society.

Dear Contributor(s):

Thank you for submitting your Contribution for publication. In order to expedite the publishing process and enable Wiley to disseminate your work to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned to us as soon as possible. If the Contribution is not accepted for publication this Agreement shall be null and void.

A. COPYRIGHT

1. The Contributor assigns to Wiley, during the full term of copyright and any extensions or renewals of that term, all copyright in and to the Contribution, including but not limited to the right to publish, republish, transmit, sell, distribute and otherwise use the Contribution and the material contained therein in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the Contribution or any material contained therein, in any medium as permitted hereunder, requires a citation to the Journal and an appropriate credit to Wiley as Publisher, suitable in form and content as follows: (Title of Article, Author, Journal Title and Volume Issue Copyright [year] Wiley Periodicals, Inc. or copyright owner as specified in the Journal.)

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor's Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution, and the right to make oral presentations of material from the Contribution.

C. OTHER RIGHTS OF CONTRIBUTOR

Wiley grants back to the Contributor the following:

1. The right to share with colleagues print or electronic "preprints" of the unpublished Contribution, in form and content as accepted by Wiley for publication in the Journal. Such preprints may be posted as electronic files on the Contributor's own website for personal or professional use, or on the Contributor's internal university or corporate networks/intranet, or secure external website at the Contributor’s institution, but not for commercial sale or for any systematic external distribution by a third party (e.g., a listserv or database connected to a public access server). Prior to publication, the Contributor must include the following notice on the preprint: "This is a preprint of an article accepted for publication in [Journal title] copyright (year) (copyright owner as specified in the Journal)". After publication of the Contribution by Wiley, the preprint notice should be amended to read as follows: "This is a preprint of an article published in [include the complete citation information for the final version of the Contribution as published in the print edition of the Journal]", and should provide an electronic link to the Journal's WWW site, located at the following Wiley URL: http://www.interscience.Wiley.com/. The Contributor agrees not to update the preprint or replace it with the published version of the Contribution.
2. The right, without charge, to photocopy or to transmit online or to download, print out and distribute to a colleague a copy of the published Contribution in whole or in part, for the Contributor's personal or professional use, for the advancement of scholarly or scientific research or study, or for corporate informational purposes in accordance with Paragraph D.2 below.

3. The right to republish, without charge, in print format, all or part of the material from the published Contribution in a book written or edited by the Contributor.

4. The right to use selected figures and tables, and selected text (up to 250 words, exclusive of the abstract) from the Contribution, for the Contributor's own teaching purposes, or for incorporation within another work by the Contributor that is made part of an edited work published (in print or electronic format) by a third party, or for presentation in electronic format on an internal computer network or external website of the Contributor or the Contributor's employer.

5. The right to include the Contribution in a compilation for classroom use (course packs) to be distributed to students at the Contributor’s institution free of charge or to be stored in electronic format in datarooms for access by students at the Contributor’s institution as part of their course work (sometimes called “electronic reserve rooms”) and for in-house training programs at the Contributor’s employer.

D. CONTRIBUTIONS OWNED BY EMPLOYER

1. If the Contribution was written by the Contributor in the course of the Contributor's employment (as a "work-made-for-hire" in the course of employment), the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor’s signature), in the space provided below. In such case, the company/employer hereby assigns to Wiley, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the published Contribution internally in print format or electronically on the Company's internal network. Upon payment of the Publisher's reprint fee, the institution may distribute (but not resell) print copies of the published Contribution externally. Although copies so made shall not be available for individual re-sale, they may be included by the company/employer as part of an information package included with software or other products offered for sale or license. Posting of the published Contribution by the institution on a public access website may only be done with Wiley's written permission, and payment of any applicable fee(s).

E. GOVERNMENT CONTRACTS

In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Government purposes only, if the U.S. Government contract or grant so requires. (U.S. Government Employees: see note at end).

F. COPYRIGHT NOTICE

The Contributor and the company/employer agree that any and all copies of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley.

G. CONTRIBUTOR'S REPRESENTATIONS

The Contributor represents that the Contribution is the Contributor's original work. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before, except for "preprints" as permitted above. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley's permissions form or in the Journal's Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe on the rights or privacy of others, or contain material or instructions that might cause harm or injury.
CHECK ONE:

[_____] Contributor-owned work
Contributor's signature
Date

Type or print name and title

Co-contributor's signature
Date

Type or print name and title

ATTACH ADDITIONAL SIGNATURE PAGE AS NECESSARY

[_____] Company/Institution-owned work
Company or Institution (Employer-for-Hire)
Date

(made-for-hire in the course of employment)

Authorized signature of Employer
Date

[_____] U.S. Government work

Note to U.S. Government Employees

A Contribution prepared by a U.S. federal government employee as part of the employee's official duties, or which is an official U.S. Government publication is called a "U.S. Government work," and is in the public domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign and return this Agreement. If the Contribution was not prepared as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.

[_____] U.K. Government work (Crown Copyright)

Note to U.K. Government Employees

The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. In such case, the Publisher will forward the relevant form to the Employee for signature.
Additional reprint and journal issue purchases

Should you wish to purchase additional copies of your article, please click on the link and follow the instructions provided: https://caesar.sheridan.com/reprints/redir.php?pub=10089&acro=JOR

Corresponding authors are invited to inform their co-authors of the reprint options available.

Please note that regardless of the form in which they are acquired, reprints should not be resold, nor further disseminated in electronic form, nor deployed in part or in whole in any marketing, promotional or educational contexts without authorization from Wiley. Permissions requests should be directed to mailto: permissionsus@wiley.com

For information about ‘Pay-Per-View and Article Select’ click on the following link: http://wileyonlinelibrary.com/ppv